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IMPACT OF PLANETARY BOUNDARY LAYER
PROCESSES ON FRONTOGENESIS

William T. Thompson

Naval Oceanographic and Atmospheric Research Laboratory
Atmospheric Directorate

Monterey, CA 93943

1. INTRODUCTION linear baroclinic instability theory
predicts an exponential doubling time of

Several analytical and numerical 43 hours and the time of "frontal col-
studies of the processes by which front- lapse" is 91 hours. Fig. 1 shows a time
ogenesis occurs have been performed (a series of minimum surface pressure for 3
brief review appears in Gill (1982)). different simulations. The curve label-
However, some important questions rega- ed "I" is for a high vertical resolution
rding frontogenesis remain unanswered. adiabatic and inviscid (AIHR) simula-
One of the most fundamental of these tion. The curve labeled "2" Is for a
concerns the impact of planetary boun- high vertical resolution simulation
dary layer (PBL) physics on the evolu- employing a K-theory parameterization
tion of fronts. similar to that used by the European

Center for Medium Range Weather Fore-
In g- ral, one can envision that casting (Louis, 1979). The curve label-

surface s s, static stability, and ed "3" is for a low vertical resolution
turbulent aiffusion must be important in simulation employing a bulk PBL para-
the formation of zones of large horizon- meterization developed by Deardorff
tal gradients in the atmosphere. In (1972).
particular, the formation of disconti-
nuities does not take place in numerical 1o0o-

modeling studies incorporating turbulent
diffusion since turbulent mixing reduces 1010
the magnitude of gradients in tempera-
ture and wind speed. Hoskins and 1o0-
Bretherton (1972) note that the exist-
ence of a large Richardson number in the *

vicinity of modeled fronts implies that
turbulent mixing would be important.
Steady-state fronts were produced by I -Ad06batsn A IsI" fteewi.,
Williams (1974) using simple parameteri- gTo 2-KThyMWeeoti
zations of horizontal and vertical dif- 3-SuPOL
fusion of heat and momentum. In a two-
dimensional modeling study, Keyser and
Anthes (1982) found that adding PBL
physics to an adiabatic and inviscid 0 20 40 00 so 6o 12C

simulation resulted in much more realis- TUE (H)

tic frontal structure and circulation. Figure 1. Time series of minimum

surface pressure (mb) for three
In the present study, three dimen- simulations

sional aspects of the problem are inves-
tigated. In order to isolate bounaary
layer processes important in frontogene-
sis, several different PBL parameteri- Fig. 2 shows a cross section of
zations are used . Frontogenesis is cold frontal structure for the AIHR
forced by an unstable baroclinic wave. simulation at day 4. Note that, without
A series of 5 day integrations using a PBL physics, the model produces an in-
three dimensional, hydrostatic, primi- tense cold front and a thermally direct
tive equation model is discussed. In vertical circulation (not shown). The
each case, warm and cold fronts of ap- cross-front temperature gradient is
proximately equivalent strength are nearly independent of elevation. The
produced as the wave amplitude increas- boundary layer behind the front is sli-
es. ghtly stable, however, and the ascending

branch of the vertical circulation is
2. RESULTS weak and not based at the surface. Fig.

3 shows the cold frontal structure for
The simulations are initialized with the bulk PBL simulation at day 5. Note

a baroclinically unstable state on which that the PBL in the cold air is well
a 3,000 km perturbation is super-impos- mixed and that the vertical motion field
ed. Given these initial conditions, (not shown) exhibits a very compact
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I I 3. DISCUSSION

The results indicate that inclu-
sion of even a simple PBL parameteriza-
tion in a simulation of frontogenesis
produces a far more realistic depiction
of frontal features than does an adiaba-
tic and inviscid 3imulation. With the
additional sophistication of the K-theo-

U2 ry parameterization, the ascending
branch of the direct vertical circula-

H3 tion (not shown) has the appearance of
an ascending Jet. A similar feature has

_9B been observed in advance of cold fronts
by Sanders (1955) and Shapiro (1984) and
simulated by Keyser and Anthes 1982) and
Reeder (1986).
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